Aplicação de curativos avançados e inteligentes no manejo de feridas agudas e crônicas
DOI:
https://doi.org/10.26694/reufpi.v14i1.6997Palavras-chave:
Feridas, Cicatrização de Feridas, CurativosResumo
Objetivo: Apresentar curativos modernos e inteligentes utilizados no tratamento de diferentes tipos de feridas, analisando os tipos de materiais, sua estrutura, mecanismos de ação, propriedades funcionais, vantagens, desvantagens e a apresentação de pesquisas atuais que apontam para seu potencial de melhorar o processo de cicatrização. Métodos: Foi realizada uma busca no Google Acadêmico e em bases de dados relevantes, incluindo ScienceDirect, Scopus e MEDLINE (PubMed), para identificar um grande número de artigos revisados por pares. Resultados: Os curativos modernos e inteligentes representam uma mudança significativa na área da saúde, oferecendo inúmeras vantagens em relação aos métodos convencionais. O avanço das opções terapêuticas modernas apresenta uma ampla gama de oportunidades para o desenvolvimento de uma abordagem personalizada para a cicatrização de feridas. Conclusão: Uma abordagem multidisciplinar e uma estreita colaboração entre médicos, enfermeiros e engenheiros biomédicos são a base para o futuro desenvolvimento de modalidades terapêuticas personalizadas para diferentes tipos de feridas agudas e crônicas.
Referências
1. Hassan LA, Khalfa HM, Majeed AA. Regeneration of Damaged Epidermal and Neural Cells in Rats with Subcutaneous Wounds Injected with Platelet Rich Plasma and Multivitamins. NeuroQuantology. 2021;19(10):56–61. doi: https://doi.org/10.14704/nq.2021.19.10.NQ21157
2. Olutoye OO, Eriksson E, Menchaca AD, Kirsner RS, Tanaka R, Schultz G, et al. Management of Acute Wounds-Expert Panel Consensus Statement. Adv Wound Care (New Rochelle). 2024;13(11):553-83. doi: https://doi.org/10.1089/wound.2023.0059
3. Tatarusanu SM, Lupascu FG, Profire BS, Szilagyi A, Gardikiotis I, Iacob AT, et al. Modern Approaches in Wounds Management. Polymers (Basel). 2023;15(17):3648. doi: https://doi.org/10.3390/polym15173648
4. Rashdan HRM, El-Naggar ME. Traditional and modern wound dressings—characteristics of ideal wound dressings. In: Antimicrobial Dressings. Philadelphia: Elsevier; 2023. p. 21–42.
5. Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics. 2022;15(1):42. doi: https://doi.org/10.3390/pharmaceutics15010042
6. Özcan Bülbül E, Okur ME, Üstündağ Okur N, Siafaka PI. Traditional and advanced wound dressings: physical characterization and desirable properties for wound healing. In: Natural Polymers in Wound Healing and Repair. Philadelphia: Elsevier; 2022. p. 19–50.
7. Orlińska K, Komosińska-Vassev K, Olczyk K, Glaesel M, Olczyk P. Wound healing – characteristics of the ideal dressing. Ann Acad Med Siles. 2023;77:197–203. doi: https://doi.org/10.18794/aams/173203
8. Cullen B, Gefen A. The biological and physiological impact of the performance of wound dressings. Int Wound J. 2023;20(4):1292–303. doi: https://doi.org/10.1111/iwj.13960
9. Fu X, Zheng L, Wen X, Yin X. Functional hydrogel dressings for wound management: a comprehensive review. Mater Res Express. 2023;10(11):112001. doi: https://doi.org/10.1088/2053-1591/acfb5c
10. Nuutila K, Eriksson E. Moist Wound Healing with Commonly Available Dressings. Adv Wound Care (New Rochelle). 2021;10(12):685–98. doi: https://doi.org/10.1089/wound.2020.1232
11. Nguyen HM, Ngoc Le TT, Nguyen AT, Thien Le HN, Pham TT. Biomedical materials for wound dressing: recent advances and applications. RSC Adv. 2023;13(8):5509–28. doi: https://doi.org/10.1039/D2RA07673J
12. Sinha SN, Free B, Ladlow O. The art and science of selecting appropriate dressings for acute open wounds in general practice. Aust J Gen Pract. 2022;51(11):827–30. doi: https://doi.org/10.31128/AJGP-06-22-6462
13. Saramago P, Gkekas A, Arundel CE, Chetter IC, Martin BC, Hewitt C, et al. Negative pressure wound therapy for surgical wounds healing by secondary intention is not cost-effective. British Journal of Surgery. 2025;112(5):znaf077. doi: https://doi.org/10.1093/bjs/znaf077
14. Zhang C, Zhang S, Wu B, Zou K, Chen H. Efficacy of different types of dressings on pressure injuries: Systematic review and network meta-analysis. Nurs Open. 2023;10(9):5857–67. doi: https://doi.org/10.1002/nop2.1867
15. Patton D, Moore ZE, Boland F, Chaboyer WP, Latimer SL, Walker RM, et al. Dressings and topical agents for preventing pressure ulcers. Cochrane Database Syst Rev. 2024;12(12):CD009362. https://doi.org/10.1002/14651858.CD009362.pub4
16. Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. Emerging treatment strategies in wound care. Int Wound J. 2022;19(7):1934-1954. doi: https://doi.org/10.1111/iwj.13786
17. Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics. 2022;14(8):1574. doi: https://doi.org/10.3390/pharmaceutics14081574
18. Ghasemi AH, Farazin A, Mohammadimehr M, Naeimi H. Fabrication and characterization of biopolymers with antibacterial nanoparticles and Calendula officinalis flower extract as an active ingredient for modern hydrogel wound dressings. Mater Today Commun. 2022;31:103513. doi: https://doi.org/10.1016/j.mtcomm.2022.103513
19. Kim DH, Min KH, Ki MR, Han Y, Lee M, Lee JH, et al. Porous and hydrophilic biosilica diatomite-embedded foam dressing: Advancing wound healing through enhanced absorption. J Ind Eng Chem. 2025. In press. Available from: https://www.sciencedirect.com/science/article/pii/S1226086X25003752 doi: https://doi.org/10.1016/j.jiec.2025.05.052
20. Long Y, Liu X, Huang F, Peng L, Duan Y, Bai G, et al. Normal-pressure-prepared chitosan carbonate liquid dressing: Spontaneous transformation into a pure chitosan water-resistant film and enhanced wound repair. Carbohydr Polym. 2025;366:123805. doi: https://doi.org/10.1016/j.carbpol.2025.123805
21. Huang F, Yang D, Bai G, Su D, Zhu Z, Long Y. Rapid, organic-solvent-free freeze-thaw fabrication of pure chitosan sponges for scalable potential wound dressing applications. Carbohydr Polym Technol Appl. 2025;10:100809. doi: https://doi.org/10.1016/j.carpta.2025.100809
22. Zhao J, Wang Y, Lu F, Hu E, Xie R, Lan G, et al. Development of an aligned nanofiber composite silk fibroin multilayer dressings: Accelerating wound healing and reducing scar formation. Int J Biol Macromol. 2025;310:143178. doi: https://doi.org/10.1016/j.ijbiomac.2025.143178
23. Shahroudi S, Parvinnasab A, Salahinejad E, Abdi S, Rajabi S, Tayebi L. Efficacy of 3D-printed chitosan cerium oxide dressings coated with vancomycin-loaded alginate for chronic wounds management. Carbohydr Polym. 2025;349:123036. doi: https://doi.org/10.1016/j.carbpol.2024.123036
24. Yusakul G, Jomrit J, Bacabac RG, Prasopthum A. 3D printed personalized wound dressings using a hydrophobic deep eutectic solvent (HDES)-formulated emulgel. RSC Adv. 2024;14(46):34175–91. doi: https://doi.org/10.1039/D4RA05456C
25. Sheng K, Zheng X, Ren J, Gao Y, Long J, Wang Z, et al. Cotton gauze fabricated with hydro-stable Zn-MOF enables hemostasis acceleration, antibacterial activity, and wound regeneration. Int J Biol Macromol. 2025;316:144654. doi: https://doi.org/10.1016/j.ijbiomac.2025.144654
26. Tang N, Zheng Y, Jiang X, Zhou C, Jin H, Jin K, et al. Wearable Sensors and Systems for Wound Healing-Related pH and Temperature Detection. Micromachines (Basel). 2021;12(4):430. doi: https://doi.org/10.3390/mi12040430
27. Arafa AA, Nada AA, Ibrahim AY, Sajkiewicz P, Zahran MK, Hakeim OA. Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. Int J Biol Macromol. 2021;182:1820–31. doi: https://doi.org/10.1016/j.ijbiomac.2021.05.167
28. Elkenawy NM, Karam HM, Aboul-Magd DS. Development of gamma irradiated SSD-embedded hydrogel dyed with prodigiosin as a smart wound dressing: Evaluation in a MDR infected burn rat model. Int J Biol Macromol. 2022;211:170–82. doi: https://doi.org/10.1016/j.ijbiomac.2022.05.063
29. Wang J, Zhao C, Yang P, He H, Yang Y, Lan Z, et al. A multifunctional electronic dressing with textile-like structure for wound pressure monitoring and treatment. J Colloid Interface Sci. 2025;679:737–47. doi: https://doi.org/10.1016/j.jcis.2024.10.116
30. Li Y, Liu Y, Peng B, Li X, Fang T, Liu S, et al. Stretchable, conductive, breathable and moisture-sensitive e-skin based on CNTs/graphene/GelMA mat for wound monitoring. Biomater Adv. 2022;143:213172. doi: https://doi.org/10.1016/j.bioadv.2022.213172
31. Hosseini SM, Abdouss M, Mazinani S, Soltanabadi A, Kalaee M. Modified nanofiber containing chitosan and graphene oxide-magnetite nanoparticles as effective materials for smart wound dressing. Compos B Eng. 2022;231:109557. doi: https://doi.org/10.1016/j.compositesb.2021.109557
32. Alven S, Peter S, Mbese Z, Aderibigbe BA. Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers (Basel). 2022;14(4):724. doi: https://doi.org/10.3390/polym14040724
33. Pickles S, McAllister E, McCullagh G, Nieroba T. Quality improvement evaluation of postoperative wound dressings in orthopaedic patients. Int J Orthop Trauma Nurs. 2022;45:100922. doi: https://doi.org/10.1016/j.ijotn.2022.100922
34. Tavakoli M, Labbaf S, Mirhaj M, Salehi S, Seifalian AM, Firuzeh M. Natural polymers in wound healing: From academic studies to commercial products. J Appl Polym Sci. 2023;140(22):1169. doi: https://doi.org/10.1002/app.53910
35. Schiefer J, Andreae J, Fuchs P, Lefering R, Heidekrueger P, Schulz A, et al. Evaluation of Scar Quality after Treatment of Superficial Burns with Dressilk® and Suprathel®—In an Intraindividual Clinical Setting. J Clin Med. 2022;11(10):2857. doi: https://doi.org/10.3390/jcm11102857
36. Li D, Liang R, Wang Y, Zhou Y, Cai W. Preparation of silk fibroin‐derived hydrogels and applications in skin regeneration. Health Sci Rep. 2024;7(8):e2295. doi: https://doi.org/10.1002/hsr2.2295
37. Ho TT, Tran HA, Doan VK, Maitz J, Li Z, Wise SG, et al. Natural Polymer‐Based Materials for Wound Healing Applications. Adv Nanobiomed Res. 2024;4(5):2300131. doi: https://doi.org/10.1002/anbr.202300131
38. PREVOR. Dressilk® - Superficial wounds therapy [Internet]. Valmondois: PREVOR; [cited 2025 Jun 26]. Available from: https://www.dressilk.com/en/
39. Janssen AHJ. Promising results in wound care with a new rapid capillary action dressing: a case series study. Wounds Intl. [Internet]. 2021;12(3):20–5. Available from: https://woundsinternational.com/journal-articles/promising-results-wound-care-new-rapid-capillary-action-dressing-case-series-study/
40. Sleegers R. Gipstherapie bij een diabetisch hielulcus. Ned Tijdschr Diabetol. 2021;19(1):10–4. doi: https://doi.org/10.1007/s12467-021-0613-x
41. Breitwieser M, Viaene D. Capillary pressure in wound dressings: an investigation on behalf of Protex Healthcare Ltd. [Internet]. IMETER MessSysteme & Protex Healthcare Ltd.; 2021 [cited 2025 Jun 29]. Available from: https://www.imeter.de/120VACUTEX2020eng
42. Holloway S, Bradbury S. Wound dressings. Surgery (Oxford). 2024;42(11):805–13. doi: https://doi.org/10.1016/j.mpsur.2024.08.009
43. Alvarez OM, Granick MS, Reyzelman A, Serena T. A prospective, randomized, controlled, crossover study comparing three multilayered foam dressings for the management of chronic wounds. J Comp Eff Res. 2021;10(6):481–93. doi: https://doi.org/10.2217/cer-2020-0268
44. Chrysostomou D, Papanikolaou GE, Boshoff L, Mbele T, Pokorná A, Holubová A, et al. Uncovering the Advantages of Foam Dressings with Active Ingredients. Pharmaceuticals. 2025;18(6):768. doi: https://doi.org/10.3390/ph18060768
45. Minsart M, Vlierberghe S Van, Dubruel P, Mignon A. Commercial wound dressings for the treatment of exuding wounds: an in-depth physico-chemical comparative study. Burns Trauma. 2022;10:tkac024. doi: https://doi.org/10.1093/burnst/tkac024
46. Isopencu G, Deleanu I, Busuioc C, Oprea O, Surdu V-A, Bacalum M, et al. Bacterial Cellulose—Carboxymethylcellulose Composite Loaded with Turmeric Extract for Antimicrobial Wound Dressing Applications. Int J Mol Sci. 2023;24(2):1719. doi: https://doi.org/10.3390/ijms24021719
47. Solanki D, Vinchhi P, Patel MM. Design Considerations, Formulation Approaches, and Strategic Advances of Hydrogel Dressings for Chronic Wound Management. ACS Omega. 2023;8(9):8172–89. doi: https://doi.org/10.1021/acsomega.2c06806
48. Shrestha S, Wang B, Dutta PK. Commercial Silver-Based Dressings: In Vitro and Clinical Studies in Treatment of Chronic and Burn Wounds. Antibiotics. 2024;13(9):910. doi: https://doi.org/10.3390/antibiotics13090910
49. Arviansyah A, Puling IMDR, Ibrahim FZ, Augustin NMAF, Wilyanto SE, Wihastyoko HYL. Effectiveness and Safety of Aquacel Ag in Burn Injury Management: a Systematic Review and Meta-Analysis of Randomized Controlled Trial. [Internet]. Teikyo Med J. 2023;46(09):8203–10. Available from: https://www.teikyomedicaljournal.com/article/effectiveness-and-safety-of-aquacel-ag-in-burn-injury-management-a-systematic-review-and-meta-analysis-of-randomized-controlled-trial
50. Moraes FCA de, Ferraz Barbosa B, Sepulvida D, Bordignon Barbosa C, Brochi LM, Figueroa ES, et al. Nile Tilapia Skin Xenograft Versus Silver-Based Dressings in the Management of Partial-Thickness Burn Wounds: A Systematic Review and Meta-Analysis. J Clin Med. 2024;13(6):1642. doi: https://doi.org/10.3390/jcm13061642
51. Chen K, Sivaraj D, Davitt MF, Leeolou MC, Henn D, Steele SR, et al. Pullulan‐Collagen hydrogel wound dressing promotes dermal remodelling and wound healing compared to commercially available collagen dressings. Wound Repair Regen. 2022;30(3):397–408. doi: https://doi.org/10.1111/wrr.13012
52. 3M™. Fibracol™ Plus collagen wound dressing with alginate [Internet]. 3M; [cited 2025 Jun 30]. Available from: https://www.3m.com/3M/en_LB/p/d/v101264122/
53. Barrett JP, Raby E, Wood F, Coorey R, Ramsay JP, Dykes GA, et al. An in vitro study into the antimicrobial and cytotoxic effect of ActicoatTM dressings supplemented with chlorhexidine. Burns. 2022;48(4):941–51. doi: https://doi.org/10.1016/j.burns.2021.09.019
54. Lee YJ, Park KS, Kim DY, Shim HS. Evaluating Effectiveness of Medical Grade Honey- Containing Alginate Dressing in Patients with Chronic Lower Extremity Wounds. J Wound Manag Res. 2021;17(3):178–86. doi: https://doi.org/10.22467/jwmr.2021.01557
55. Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. Honey-Based Medicinal Formulations: A Critical Review. Applied Sciences. 2021;11(11):5159. doi: https://doi.org/10.3390/app11115159
56. Polverino G, Russo F, D’Andrea F. Bioactive Dressing: A New Algorithm in Wound Healing. J Clin Med. 2024;13(9):2488. doi: https://doi.org/10.3390/jcm13092488
57. Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, et al. Selection of Appropriate Wound Dressing for Various Wounds. Front Bioeng Biotechnol. 2020;8:182. doi: https://doi.org/10.3389/fbioe.2020.00182
58. Britto EJ, Nezwek TA, Popowicz P, et al. Wound Dressings. [Updated 2024 Jan 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470199/
59. Bishop A. Factors influencing dressing choice in wound care: a discussion. British Journal of Nursing. 2023;32(Sup20):S12–20. doi: https://doi.org/10.12968/bjon.2023.32.Sup20.S12
60. Hutchinson K. The road to transforming wound care: Empowering clinicians and improving patient outcomes through education. Wounds UK. [Internet]. 2025;21(1):54–7. Available from: https://wounds-uk.com/journal-articles/the-road-to-transforming-wound-care-empowering-clinicians-and-improving-patient-outcomes-through-education/
61. Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, et al. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res. 2023;27(1)87. doi: https://doi.org/10.1186/s40824-023-00426-2
62. Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol. 2024;12:1309541. doi: https://doi.org/10.3389/fbioe.2024.1309541
63. Kaya S, Derman S. Properties of Ideal Wound Dressing. Ankara Universitesi Eczacilik Fakultesi Dergisi. 2023;47(3):5–5. https://doi.org/10.33483/jfpau.1253376
64. Su L, Jia Y, Fu L, Guo K, Xie S. The emerging progress on wound dressings and their application in clinic wound management. Heliyon. 2023;9(12):e22520. doi: https://doi.org/10.1016/j.heliyon.2023.e22520
65. Laurano R, Boffito M, Ciardelli G, Chiono V. Wound dressing products: A translational investigation from the bench to the market. Engineered Regeneration. 2022;3(2):182–200. doi: https://doi.org/10.1016/j.engreg.2022.04.002
66. Alberts A, Tudorache D-I, Niculescu A-G, Grumezescu AM. Advancements in Wound Dressing Materials: Highlighting Recent Progress in Hydrogels, Foams, and Antimicrobial Dressings. Gels. 2025;11(2):123. doi: https://doi.org/10.3390/gels11020123
67. Pang Q, Yang F, Jiang Z, Wu K, Hou R, Zhu Y. Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Mater Des. 2023;229:111917. doi: https://doi.org/10.1016/j.matdes.2023.111917
68. Wu X, Liu C, Jiang Y, Dai T, Zhang L, Wang J, et al. Coaxial Electrospun Polycaprolactone/Gelatin Nanofiber Membrane Loaded with Salidroside and Cryptotanshinone Synergistically Promotes Vascularization and Osteogenesis. Int J Nanomedicine. 2024;19:6519-6546. doi: https://doi.org/10.2147/IJN.S461141
69. Khan MUA, Stojanović GM, Hassan R, Anand TJS, Al-Ejji M, Hasan A. Role of Graphene Oxide in Bacterial Cellulose-Gelatin Hydrogels for Wound Dressing Applications. ACS Omega. 2023;8(18):15909-15919. doi: https://doi.org/10.2147/IJN.S46114110.1021/acsomega.2c07279
70. Naderi Gharahgheshlagh S, Latifi N, Ghadimi T, Hosseinpour Sarmadi V, Mousavi SA, Ghasemian M, et al. Investigation impact of PVA nanofibers collagen-coated containing the conditioned medium of adipose mesenchymal stem cells (hA MSCs) in third degree burn wound healing. Materials Today Communications. 2025;48:113289. doi: https://doi.org/10.1016/j.mtcomm.2025.113289
71. Emaminia A, Hashemnia M, Cheraghi H, Rezaei F. A novel esculin loaded bacterial nanocellulose wound dressing enhances cutaneous wound healing via modulation of inflammation, oxidative stress, and growth factor expression. Int J Biol Macromol. 2025;333:148810. doi: https://doi.org/10.1016/j.ijbiomac.2025.148810
72. Vo DK, Trinh KTL. Advances in Wearable Biosensors for Wound Healing and Infection Monitoring. Biosensors (Basel). 2025;15(3):139. doi: https://doi.org/10.3390/bios15030139
73. Pang Q, Yang F, Jiang Z, Wu K, Hou R, Zhu Y. Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Mater Des. 2023;229:111917. doi: https://doi.org/10.1016/j.matdes.2023.111917
74. Barros Almeida I, Garcez Barretto Teixeira L, Oliveira de Carvalho F, Ramos Silva É, Santos Nunes P, Viana Dos Santos MR, et al. Smart Dressings for Wound Healing: A Review. Adv Skin Wound Care. 2021;34(2):1-8. doi: https://doi.org/10.1097/01.ASW.0000725188.95109.68
75. Wang Z, Ahn Y, Kwon S, Yu T, Dai Y, Walsh J, et al. Roll-To-Roll Production of Smart Dressings for Wound Monitoring. Adv Healthc Mater. 2025;14(27):e01998. doi: https://doi.org/10.1002/adhm.202501998
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista Enfermagem UFPI

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores mantém os direitos autorais e concedem à REUFPI o direito de primeira publicação, com o trabalho licenciado sob a Licença Creative Commons Attibution BY 4.0 que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.






















