An update on the role of Hfq RNA Chaperone in resistance and virulence of Acinetobacter baumannii


  • Lilian Caroliny Amorim Silva Laboratório de Microbiologia, Departamento de Microbiologia, Instituto Aggeu Magalhães. Recife, Pernambuco, Brasil
  • Nilma Cintra Leal Laboratório de Microbiologia, Departamento de Microbiologia, Instituto Aggeu Magalhães. Recife, Pernambuco, Brasil
  • Danilo Elias Xavier Laboratório de Microbiologia, Departamento de Microbiologia, Instituto Aggeu Magalhães. Recife, Pernambuco, Brasil



Virulence, Drug resistance, Acinetobacter baumannii, Review, Chaperone, Host Factor 1 Protein


Introduction: The difficulty in treating Acinetobacter baumannii infections due to its high rate of resistance to antibiotics has led to the study of mechanisms inherent to the pathogen itself that can be used as effective targets in the treatment. Host Factor I Protein (Hfq) is an RNA chaperone generally necessary to assist in the connection between sRNAs and their mRNA target acting in the regulation of different genes, studies carried out in a range of bacterial species have shown that Hfq acts in a pleiotropic manner, contributing to virulence and response stress. Aim: To summarize current knowledge about the role of the Hfq RNA chaperone in the virulence and antibiotic resistance of Acinetobacter baumannii. Outlining: This is an integrative review developed from articles published in any language on Science Direct and PubMed platforms. Data collection and analysis were carried out between the period of April 2020 and February 2021. Results: Hfq shown to play important roles in cell growth, OMVs, metabolism of carbon sources, tolerance to physical and chemical stress, virulence through biofilm formation, fimbriae modulation, among others. Implications: Our work shows data that strengthen the role of Hfq in different aspects of virulence and environmental adaptation, including antimicrobial resistance of this pathogen, warning about the importance of Hfq as a possible future effective target in the treatment of these infections.



Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis [Internet] 2008. [cited 2022 Jan 02];46(8):1254–1263. Available from:

Nwugo CC, Gaddy JA, Zimbler DL, Actis LA. Deciphering the iron response in Acinetobacter baumannii: A proteomics approach. J Proteomics [Internet] 2011. [cited 2022 Jan 02]; 74(1):44–58. Available from:

Giamarellou H, Antoniadou A, Kanellakopolou K. Acinetobacter baumannii: a universal threat to public health? Int J Antimicrob Agents [Internet] 2008. [cited 2022 Jan 02];32(2):106–119. Available from:

Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents [Internet] 2010. [cited 2022 Jan 02];35(3):219–226. Available from:

Storz G, Vogel J, Wassarman KM. Regulation by Small RNAs in Bacteria: Expanding Frontiers. Mol Cell [Internet] 2011. [cited 2022 Jan 02];43(6):880–891. Available from:

Sharma A, Dubey V, Sharma R, Devnath K, Gupta VK, Akhter J, et al. The unusual glycine-rich C terminus of the Acinetobacter baumannii RNA chaperone Hfq plays an important role in bacterial physiology. J Biol Chem [Internet] 2018. [cited 2022 Jan 02];293(35):13377–13388. Available from:

Kuo HY, Chao HH, Liao PC, Hsu L, Chang KC, Tung CH, et al. Functional characterization of Acinetobacter baumannii Lacking the RNA chaperone Hfq. Front Microbiol [Internet] 2017. [cited 2022 Jan 02];8:1-12. Available from:

Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol [Internet] 2011. [cited 2022 Jan 02];9(8):578–589. Available from:

Chao Y, Vogel JA. A 3’ UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response. Mol Cell [Internet] 2016. [cited 2022 Jan 02];61(3):352–363. Available from:

Bohn C, Rigoulay C, Bouloc P. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol [Internet] 2007. [cited 2022 Jan 02];7:1–9. Available from:

Sittka A, Pfeiffer V, Tedin K, Vogel J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol [Internet] 2007. [cited 2022 Jan 02];63(1):193–217. Available from:

Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A, Jäger KE, et al. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog [Internet] 2003. [cited 2022 Jan 02];35(5):217–228. Available from:

Ding Y, Davis BM, Waldor MK. Hfq is essential for Vibrio cholerae virulence and downregulates σEexpression. Mol Microbiol [Internet] 2004. [cited 2022 Jan 02];53(1):345–354. Available from:

Chiang MK, Lu MC, Liu LC, Lin CT, Lai YC. Impact of Hfq on global gene expression and virulence in Klebsiella pneumoniae. PLoS ONE [Internet] 2011. [cited 2022 Jan 02];6(7):e22248. Available from:

Amin SV, Roberts JT, Patterson DG, Coley AB, Allred JA, Denner, et al. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium. RNA Biol [Internet] 2016. [cited 2022 Jan 02];13(3):331–342. Available from:

Berry KE, Hochschild A. A bacterial three-hybrid assay detects Escherichia coli Hfq-sRNA interactions in vivo. Nucleic Acids Res [Internet] 2018. [cited 2022 Jan 02];46(2):1–12. Available from:

Andrade JM, Santos RF, Chelysheva I, Ignatova Z, Arraiano CM. The RNA ‐binding protein Hfq is important for ribosome biogenesis and affects translation fidelity. EMBO J [Internet] 2018. [cited 2022 Jan 02];37(11):1–13. Available from:

Zhang L, Yu W, Tang Y, Li H, Ma X, Liu Z. RNA chaperone hfq mediates persistence to multiple antibiotics in Aeromonas veronii. Microb Pathog [Internet] 2019. [cited 2022 Jan 02];132:124–128. Available from:

Kulesus RR, Diaz-Perez K, Slechta ES, Eto DS, Mulvey MA. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun [Internet] 2008. [cited 2022 Jan 02];76(7):3019–3026. Available from:

De Lay N, Schu DJ, Gottesman S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J Biol Chem [Internet] 2013. [cited 2022 Jan 02];288(12):7996–8003. Available from:

Peng Y, Curtis JE, Fang X, Woodson SA. Structural model of an mRNA in complex with the bacterial chaperone Hfq. Proc Natl Acad Sci U S A [Internet] 2014. [cited 2022 Jan 02];111(48):17134–17139. Available from:

Felicinao JR, Grilo AM, Guerreiro SI, Sousa SA, Leitão JH. Hfq: A multifaceted RNA chaperone involved in virulence. Future Microbiol [Internet] 2016. [cited 2022 Jan 02];11(1):137–151. Available from:

Morita T, Aiba H. Mechanism and physiological significance of autoregulation of the Escherichia coli HFQ gene. Rna [Internet] 2019. [cited 2022 Jan 02];25(2):264–276, 2019. Available from:

Schilling D, Gerischer U. The Acinetobacter baylyi hfq gene encodes a large protein with an unusual C terminus. J Bacteriol [Internet] 2009. [cited 2022 Jan 02];191(17):5553–5562. Available from:

Yamada J, Yamasaki S, Hirakawa H, Hayashi-Nishino M, Yamaguchi A, Nishino K. Impact of the RNA chaperone HFQ on multidrug resistance in Escherichia coli. J Antimicrob Chemother [Internet] 2010. [cited 2022 Jan 02];65(5):853–858. Available from:

Murina VN, Nikulin AD. Bacterial Small Regulatory RNAs and Hfq Protein. Biochemistry (Mosc) [Internet] 2015. [cited 2022 Jan 02];80(13):1647–1654. Available from:

Updegrove TB, Zhang A, Storza G. Hfq: the flexible RNA matchmaker. Curr Opin Microbiol [Internet] 2017. [cited 2022 Jan 02];25(5):1032–1057. Available from:

Dimastrogiovanni D, Fröhlich KS, Bandyra KJ, Bruce HA, Hohensee S, Vogel J, Luisi BF. Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. Elife [Internet] 2014. [cited 2022 Jan 02];3:1–19. Available from:

Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA. Acidic C-terminal domains autoregulate the RNA chaperone Hfq. Elife [Internet] 2017. [cited 2022 Jan 02];6:1–25. Available from:

Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol [Internet] 2004. [cited 2022 Jan 02];11(12):1206–1214. Available from:

Andrade JM, Pobre V, Matos AM, Arraiano CM. The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. RNA [Internet] 2012. [cited 2022 Jan 02];18(4):844–855. Available from:

Peterson CN, LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol [Internet] 2006. [cited 2022 Jan 02];188(9):3175–3181. Available from:

Chao Y, Vogel J. The role of Hfq in bacterial pathogens. Curr Opin Microbiol [Internet] 2012. [cited 2022 Jan 02];13(1):24–33. Available from:

Sachetto- Martins G, Franco LO, Oliveira DE. Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim Biophys Acta [Internet] 2000. [cited 2022 Jan 02];1492(1):1-14. Available from:



Como Citar

SILVA, L. C. A. ., Leal, N. C. ., & Xavier, D. E. . (2022). An update on the role of Hfq RNA Chaperone in resistance and virulence of Acinetobacter baumannii. Revista Prevenção De Infecção E Saúde, 8(1).



Revisão Integrativa/Sistemática