Global trends from original research on COVID-19 and coinfection

Autores

  • Maria Eliete Batista Moura Universidade Federal de Piauí. Programa de Pós-Graduação em Enfermagem. Teresina, Piauí, Brasil
  • Antonio Rosa de Sousa Neto Universidade Federal de Piauí. Programa de Pós-Graduação em Enfermagem. Teresina, Piauí, Brasil
  • Rogério Epolua Chissamba Universidade Federal de Piauí. Programa de Pós-Graduação em Enfermagem. Teresina, Piauí, Brasil
  • Ana Raquel Batista de Carvalho Universidade Federal de Piauí. Programa de Pós-Graduação em Enfermagem. Teresina, Piauí, Brasil
  • Neris Violeta Gonzalez Peres Universidade Federal de Piauí. Programa de Pós-Graduação em Enfermagem. Teresina, Piauí, Brasil
  • Thais Alexandre de Oliveira Universidade Federal de Piauí. Programa de Pós-Graduação em Enfermagem. Teresina, Piauí, Brasil
  • Andreia Rodrigues Moura da Costa Valle Universidade Federal de Piauí. Programa de Pós-Graduação em Enfermagem. Teresina, Piauí, Brasil
  • Daniela Reis Joaquim de Freitas Universidade Federal de Piauí. Programa de Pós-Graduação em Enfermagem. Teresina, Piauí, Brasil

DOI:

https://doi.org/10.26694/repis.v8i1.4208

Palavras-chave:

SARS-CoV-2; Mixed Infection; Pandemic; Bibliometric Indicators

Resumo

Introduction: The clinical symptomatology of SARS-CoV-2 and the occurrence of coinfections can be masked by the similarity of the manifestations, thereby delaying the clinical diagnosis and therapeutic decision-making, favoring the worsening of the clinical condition and increasing the chances of death. Aim: to conduct a bibliometric analysis of the world's scientific production on COVID-19 and coinfection in general. Outlining: Bibliometric study with a quantitative approach. Two hundred eight articles were analyzed using the Bibliometrix R package and the Biblioshiny application. Results: The articles were published mainly in 2021 and 2022. The scientific journals that published the most were the Journal of Medical Virology and Cureus. The most cited was the Journal of Medical Virology. The articles were cited 2567 times and addressed the etiology of coinfections, which bacteria, other viruses, fungi, and vectors can cause. Implications: Through this bibliometric analysis, it was possible to identify global trends in research on COVID-19 and coinfection, which in the long term can support the development of new research and the elaboration of strategies aimed at preventing, controlling, and managing cases of coinfections, not only in the pandemic period but continuously.

Referências

World Health Organization. Timeline: WHO's COVID-19 response. [Internet] 2023. [cited 2023 Jan 02]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus 2019/interactive-timeline

Sousa Neto AR, Carvalho ARB, Oliveira EMN, Magalhães RLB, Moura MEB, Freitas DRJ. Symptomatic manifestations of the disease caused by coronavirus (COVID-19) in adults: systematic review. Rev Gaúcha Enferm [Internet]. 2021 [cited 2023 Jan 02]; 42(spe):e20200205. Available from: https://doi.org/10.1590/1983-1447.2021.20200205

Garcia-Vidal C, Sanjuan G, Moreno-García E, Puerta-Alcalde P, Garcia-Pouton N, Chumbita M, et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin Microbiol Infect [Internet]. 2021 [cited 2023 Jan 02]; 27(1):83-88. Available from: https://doi.org/10.1016/j.cmi.2020.07.041

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet [Internet]. 2020 [cited 2023 Jan 02]; 28;395(10229):1054-1062. Available from: https://doi.org/10.1016/S0140-6736(20)30566-3

Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, et al. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin Infect Dis [Internet]. 2020 [cited 2023 Jan 02]; 71(9):2459-2468. Available from: https://doi.org/10.1093/cid/ciaa530

Musuuza JS, Watson L, Parmasad V, Putman-Buehler N, Christensen L, Safdar N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: A systematic review and meta-analysis. PLoS One [Internet]. 2021 [cited 2023 Jan 02]; 16(5):e0251170. Available from: https://doi.org/10.1371/journal.pone.0251170

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med [Internet]. 2020 [cited 2023 Jan 02]; 46(5):846-848. Available from: https://doi.org/10.1007/s00134-020-05991-x

Zupic I, Cater T. Bibliometric methods in management and organization. Organ Res Methods [Internet]. 2015 [cited 2023 Jan 02]; 18(3):429–472. Available from: https://doi.org/10.1177/1094428114562629

Birkle C, Pendlebury DA, Schnell J, et al. Web of Science as a data source for research on scientific and scholarly activity. Quant Sci Stud [Internet]. 2020 [cited 2023 Jan 02]; 1(1):363 376. Available from: https://doi.org/10.1162/qss_a_00018.

Ekundayo TC, Okoh AI. A global bibliometric analysis of Plesiomonas-related research (1990–2017). PLoS One [Internet]. 2018 [cited 2023 Jan 02]; 13(11):e0207655. Available from: https://doi.org/10.1371/journal.pone.0207655

Okaiyeto K, Ekundayo TC, Okoh AI. Global research trends on bioflocculant potentials in wastewater remediation from 1990 to 2019 using a bibliometric approach. Lett Appl Microbiol [Internet]. 2020 [cited 2023 Jan 02]; 71(6):567-579. Available from: https://doi.org/10.1111/lam.13361

Aria M, Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr [Internet]. 2017 [cited 2023 Jan 02]; 11(4):959–975. Available from: https://doi.org/10.1016/j.joi.2017.08.007

Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep [Internet]. 2019 [cited 2023 Mar 26]; 9(1):5233. Available from: https://doi.org/10.1038/s41598-019-41695-z

Hughes S, Troise O, Donaldson H, Mughal N, Moore LSP. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary care setting. Clin Microbiol Infect [Internet]. 2020 [cited 2023 Jan 02]; 26(10):1395–9. Available from: https://doi.org/10.1016/j.cmi.2020.06.025

Vaughn VM, Gandhi T, Petty LA, Patel PK, Prescott HC, Malani AN, et al. Empiric Antibacterial Therapy and Community-onset Bacterial Co-infection in Patients Hospitalized with COVID-19: A Multi-Hospital Cohort Study. Clin Infect Dis [Internet]. 2020 [cited 2023 Jan 02]; 1–14. Available from: https://doi.org/10.1093/cid/ciaa1239

Wu Q, Xing Y, Shi L, Li W, Gao Y, Pan S, et al. Coinfection and Other Clinical Characteristics of COVID-19 in Children. Pediatrics [Internet]. 2020 [cited 2023 Jan 02]; 146(1). Available from: https://doi.org/10.1542/peds.2020-0961

Nori P, Cowman K, Chen V, Bartash R, Szymczak W, Madaline T, et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect Control Hosp Epidemiol [Internet]. 2021 [cited 2023 Jan 02]; 42(1):84–8. Available from: https://doi.org/10.1017/ice.2020.368

Bai L, Zhao Y, Dong J, Liang S, Guo M, Liu X, et al. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res [Internet]. 2021 [cited 2023 Mar 26]; 31(4):395-403. Available from: https://doi.org/10.1080/10.1038/s41422-021-00473-1

Zhao J, Liao X, Wang H, Wei L, Xing M, Liu L, et al. Early Virus Clearance and Delayed Antibody Response in a Case of Coronavirus Disease 2019 (COVID-19) With a History of Coinfection With Human Immunodeficiency Virus Type 1 and Hepatitis C Virus. Clin Infect Dis [Internet]. 2020 [cited 2023 Mar 26]; 19;71(16):2233-2235. Available from: https://doi.org/10.1093/cid/ciaa408

Hashemi SA, Safamanesh S, Ghasemzadeh-Moghaddam H, Ghafouri M, Azimian A. High prevalence of SARS-CoV-2 and influenza A virus (H1N1) coinfection in dead patients in Northeastern Iran. J Med Virol [Internet]. 2021 [cited 2023 Mar 26]; 93(2):1008-1012. Available from: https://doi.org/10.1002/jmv.26364

Stowe J, Tessier E, Zhao H, Guy R, Muller-Pebody B, Zambon M, et al. Interactions between SARS-CoV-2 and influenza, and the impact of coinfection on disease severity: a test-negative design. Int J Epidemiol [Internet]. 2021 [cited 2023 Mar 26]; 50(4):1124-1133. Available from: https://doi.org/10.1093/ije/dyab081

Zou X, Fang M, Li S, Wu L, Gao B, Gao H, et al. Characteristics of Liver Function in Patients With SARS-CoV-2 and Chronic HBV Coinfection. Clin Gastroenterol Hepatol [Internet]. 2021 [cited 2023 Mar 26]; 19(3):597-603. https://doi.org/10.1016/j.cgh.2020.06.017

Riou C, du Bruyn E, Stek C, Daroowala R, Goliath RT, Abrahams F, et al. Relationship of SARS-CoV-2-specific CD4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. J Clin Invest [Internet]. 2021 [cited 2023 Mar 26]; 131(12):e149125. Available from: https://doi.org/10.1172/JCI149125

Hubert JJ. Linguistic indicators. Soc Indic Res [Internet]. 1980 [cited 2023 Mar 25]; 8(2)223 255. Available from: http://dx.doi.org/10.1007/bf00286478

Ssentongo P, Ssentongo AE, Voleti N, Groff D, Sun A, Ba DM, et al. SARS-CoV-2 vaccine effectiveness against infection, symptomatic and severe COVID-19: a systematic review and meta-analysis. BMC Infect Dis [Internet]. 2022 [cited 2023 Jan 02]; 22(1):439. Available from: https://doi.org/10.1186/s12879-022-07418-y.

Wu N, Joyal-Desmarais K, Ribeiro PAB, Vieira AM, Stojanovic J, Sanuade C, et al. Long-Term Effectiveness of COVID-19 Vaccines against Infections, Hospitalisations, and Mortality in Adults: Findings from a Rapid Living Systematic Evidence Synthesis and Meta-Analysis up to December, 2022. Lancet Respir Med [Internet]. 2023 [cited 2023 Jan 02]; S2213260023000152. Available from: https://doi.org/10.1016/S2213-2600(23)00015-2.

Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med [Internet]. 2014 [cited 2023 Jan 02]; 370(13):1198-208. Available from: https://doi.org/10.1056/NEJMoa1306801 28. Oliveira HM, Silva CPR, Lacerda RA. Policies for control and prevention of infections related to healthcare assistance in Brazil: a conceptual analysis. Rev Esc Enferm USP [Internet]. 2016 [cited 2023 Jan 02]; 50(3):505-511. Available from: http://dx.doi.org/10.1590/s0080-623420160000400018

Qiao F, Huang W, Zong Z, Yin W. Infection prevention and control in outpatient settings in China-structure, resources, and basic practices. Am J Infect Control [Internet]. 2018 [cited 2023 Jan 02]; 46(7):802-807. Available from: https://doi.org/10.1016/j.ajic.2017.12.006

COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID 19 pandemic: a systematic analysis of COVID-19-related mortality, 2020-21. Lancet [Internet].2022 [cited 2023 Jan 02]; 399(10334):1513–1536. Available from: https://doi.org/10.1016/S0140-6736(21)02796-3

World Health Organization. Global Infection Prevention and Control Network. About us [Internet] 2023. [cited 2023 Jan 02]. Available from: https://www.who.int/groups/global infection-prevention-and-control-network/about-us3

Liu JY, Dickter JK. Nosocomial Infections: A History of Hospital-Acquired Infections. Gastrointest Endosc Clin N Am [Internet]. 2020 [cited 2023 Mar 26];30(4):637-652. Available from: https://doi.org/10.1016/j.giec.2020.06.001

Baker MA, Sands KE, Huang SS, Kleinman K, Septimus EJ, Varma N, et al. The Impact of Coronavirus Disease 2019 (COVID-19) on Healthcare-Associated Infections. Clin Infect Dis[Internet]. 2022 [cited 2023 Mar 26];74(10):1748-1754. Available from: https://doi.org/10.1093/cid/ciab688

Publicado

2023-04-20

Como Citar

Moura, M. E. B. ., Sousa Neto, A. R. de ., Chissamba, R. E. ., Carvalho, A. R. B. de ., Peres, N. V. G. ., Oliveira, T. A. de ., Valle , A. R. M. da C., & Freitas, D. R. J. de . (2023). Global trends from original research on COVID-19 and coinfection. Revista Prevenção De Infecção E Saúde, 8(1). https://doi.org/10.26694/repis.v8i1.4208

Artigos mais lidos pelo mesmo(s) autor(es)